Automated image processing tools for high
throughput measurements of polymer coatings:
initial report on software to quantify features

Isabel Beichl
Jane Bernstein
and
Alamgir Karim

1 Introduction

We have developed a series of Matlab programs to analyze photographs of poly-
mer dewetting. This report provides details of how the programs work, what
they do, and how users can fine tune the output.

In [1], Meredith et al. have described a method to gather massive amounts of
data on the dewetting process for polymers, by using a combinatorial approach
to data collection. These data, produced by automated microscopy, are collected
in the form of photographs of polymers varying the parameters of temperature,
thickness and time. The purpose of the tools described in this report is to
identify features of the dewetting process and to quantify the features without
having a human doing the feature recognition or the counting. The volume
of the data makes human processing utterly impractical. In this report we
describe methods used on photographs of three stages of dewetting. This report
is preliminary. A set of tools to automate the analysis of the photographic
images completely, without regard to the state of dewetting, is the ultimate
goal.

2 Feature Recognition and Image Cleaning

Some examples of dewetting photographs examined in this report are shown in
figures 1, 2, 3 and 4.

For each of these types of images, we give methods for cleaning, extracting
and quantifying features. For each case we also compute a voronoi diagram, to
be explained later, and suggest it as a possible description of the evolution of
one state to the next.



Figure 1: A stage of dewetting characterized by circular holes.

50 100 150 200 250 300 350 400

Figure 2: A stage of dewetting characterized by asymmetric holes.



Figure 3: A stage of dewetting characterized by material forming beads that
resemble polygons.

Figure 4: Not only does hole size vary but the extent of cleaning needed to
extract data varies also.



Figure 5: Image from figure 1 after thresholding.

3 Thresholding and Cleaning

The photographs are in a digitized “tif” format which matlab can handle. This
allows them to be input as a matrix of integers between 0 and 256 representing
a degree of grayness from black to white. Because the images come from real
experiments there are imperfections that need to be removed before one can
quantify the features because the imperfections will be interpreted as features.
It is easier to remove these unwanted effects if we first threshold the image,
that is to define a range of brightness that is considered to be the substrate.
In this way the image is transformed into a binary image, that is a matrix
of 0’s and 1’s. However because there is a temperature gradient across the
surface of the experiment, the range of brightness considered to be substrate
in one part of the image is not the same everywhere. We approximate the
threshold by a linear function that is known at the corners of the image. Figure
5 illustrates the result of this operation on the ”Circular Hole” data set from
Figure 1. (Another technique which we have also used but not included in the
code is using the matlab ”gradient” function on the data before thresholding
and in this way replace each pixel with the difference between it and its four
neighbors. This also removes some of the effects of the temperature gradient on
the data and allows a constant threshold.)

After thresholding, it is necessary to “clean” the image to remove stray bits
that we do not consider part of the features. These occur both on the substrate
and on the material. We use a combination of the “morphing” capabilities of
matlab to accomplish this. Figure 6 illustrates the result of these operations. It



Figure 6: Image from figure 5 after cleaning.

may be necessary, depending on the data, to repeat these “morphing” operations
because each invocation of these operations makes the boundary more uniform,
more smooth. The number of re-invocations of the morphing commands to
obtain optimal solutions is not known although for the “ideal” data given in
figures 1-3, one invocation is sufficient. The code in the appendix uses the
matlab comands, bwmorph and bw fill, for cleaning.

4 Geometric Characteristics of “Holes”

After thresholding and cleaning the image, the code uses bwlabel to identify the
connected components of the white space. It does this by assigning different
identifying numbers to different areas that are unconnected. We use these num-
bers to obtain information about the holes themselves, that is the white area
of Figure 6. So in the code we use bwlabel to obtain identifying numbers and
max(maz(dd)) to count them. Similarly, we can count the number of pixels as-
signed to each “hole” and by dividing by the total number of pixels in the image
we can get estimates of the area of each hole relative to the size of the image.
After we have done this, making histograms is possible. This is illustrated in
figure 7. For the case of dewetting states such as figure 3, the areas of interest
are the polymer itself and not the substrate. Thus to use these techniques on
this data, we first need to exchange black and white which is done in matlab
with the command a = a for image a.

Similar to area, the perimeters of the holes can be computed and histograms



Histogram of Circular Hole Areas
70 T T T T T T

Frequency

- —
0 0.2 0.4 0.6 0.8 1 1.2 14
Relative Size of Hole Areas (# of Pixels per hole)/(Total pixels) x 107

Figure 7: Histograms of relative area of the “holes” from figure 6.

can be made with the bwperim function which detects the perimeter. Figure 8
illustrates the perimeters of the data from figure 6.

We would like to characterize the extent to which a hole deviates from being
a perfect circle without reference to its size. This is possible by computing
the circularity of the hole which by definition is the square of the perimeter
divided by the area. For a perfect circle of radius, R, the circularity is always
Perim?/Area = (2x7x R)?/(m* R?) = 4*7. Any other hole will have a greater
circularity. Because the holes in figure 6 are very circular they do not make
an interesting test case. However the data from figure 2 is not so regular. A
histogram of the circularity of the asymmetric holes is shown in figure 9.

We also compute centers and radii for the holes computed by bwlabel. We
do this by finding the row in the image where a given hole covers the maximum
number of columns. This assumes that the holes, if eccentric, have axes parallel
to the boundaries of the image. This assumption is reasonable because the
temperatures and thickness gradients are always parallel to the boundaries of
the plate. We are able to compute histograms for these cases too. Once we have
an estimate for the centers of the cells we are able to look at the distribution of
the centers throughout an image. This is shown in the code in the appendix in
the section on "HOLE DENSITY”. We divide the image into a certain number
of bins and count the number of hole centers that appear in a bin. As expected,
the distribution of these holes is a Poisson distribution. We compute the mean
in the section of the code labeled ”Poisson Distribution”.



Perimeters of holes

Figure 8: Perimeters of holes in figure 6.

Histogram of Asymmetrical Hole Circularity
80 T T T T T T T T

70F

60

Frequency
S @
S 3
T T

@
S
T

20

0 0.5 1 15 2 25 3 35 4
Circularity of Holes X 10°

Figure 9: Histograms of circularity derived from data in figure 2.



Circular Voronoi Cells

Figure 10: Voronoi Diagram computed from the centers of holes from figure 6.

5 Evolution

Lastly, we compute the Voronoi diagram of the centers obtained. For each
center, now considered as a vertex, a polygon is computed. The polygons do not
intersect except at their boundaries. The Voronoi diagram is a set of polygons
that divide up the plane so that a given polygon is the set of points in the
plane closest to the vertex associated with that polygon. An example is shown
in figure 10. We compute the size of voronoi cells and make histograms. We
are also able to compute the number of edges in a given voronoi cell and the
average length of an edge. The code for each of these functions can be found
in the appendix under “VORONOI CELLS”. We suspect that as dewetting
proceeds, the material tends to evolve into polygons in the shape of the Voronoi
diagram of its original hole centers. This is a topic for further investigation as
to the extent that dewetting actually proceeds in this way.

Disclaimer

Certain commercial software may be identified in order to adequately specify
or describe the subject matter of this work. In no case does such identification
imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the equipment identified is necessarily
the best available for the purpose.



References

[1] J.C.Meredith, A.P.Smith, A.Karim, E.J.Amis, “Combinatorial Material
Science for Polymer Thin Film Dewetting”, ” Combinatorial Materials Sci-
ence for Polymer Thin-Film Dewetting”, Macromolecules, vol. 33, 9747-
9756 (2000).

[2] J.C.Russ The Image Processing Handbook CRC Press, (1992).

6 Appendix: Matlab Code for Extracting Fea-
tures for Circular Hole State

%this matlab program produces an image as a 400x400 matrix.

%It reads in from a ‘‘tif’’ file and makes a histogram of the pixel values.
%Then it manipulates the matrix, and thresholds the image. Then, it

%cleans the image, prints it to the screen and calculates the number of holes
%in the image. It creates a histogram of the hole areas, perimeter, diameters,
%and circularities. It also finds the centers of the holes. Finally, it
%calculates hole densities in the image and makes histograms of the hole
%distributions.

x=imread(’filename’,’tif’);
%input is taken from a tif file named ’filename’
xx=double(x) ;

xa=min(min(xx)) : (max(max (xx))-min(min(xx)))/15:max(max(xx));
hist(xx,xa);

title(’Histogram of Original Pixel Values’);

xlabel (’Pixel Values of Matrix’);

ylabel (’Frequency’) ;

m=min(min(xx));
XX=XX-I;
m=(105-140) / (400-1) ;
for i=1:400
for j=1:400
thresh(i, j)=m*(j-400)+110; %thresholding image
end
end
for i=1:400
for j=1:400
if xx(i,j)>thresh(i,j)
yy(i,3)=1;
else
yy(i,3)=0;



end;

end
end
aa=bwmorph(yy,’clean’,Inf);
bb=bwmorph(aa, ‘majority’,Inf); %cleaning up the image
cc=bwmorph(bb,’fill’,Inf);
zz=bwfill(cc,’holes’);
dd=bwlabel (zz) ;

imshow(dd) ;
title(’Circular Holes’);

num_holes=max (max(dd))

total_area=0;
total_perim=0;
[r,c]l=size(xx);

for i=1:max(max(dd))
hole_area=(sum(sum(dd==i))); %area of each hole
area_array(i)=hole_area/(r*c);
total_area=total_areathole_area;

end

total_area
fracwhole_area=total_area/(r*c)

x=min(area_array(1l:max(max(dd)))) : (max(area_array(1l:max(max(dd))))-
min(area_array(1:max(max(dd)))))/20:max(area_array(l:max(max(dd))));

%20 is number of bins

hist(area_array(1:max(max(dd))),x);

title(’Histogram of Circular Hole Areas’); ‘%area histogram

xlabel(’Size of Hole Areas (# of Pixels)’);

ylabel (’Frequency’) ;

%PERIMETER

ee=bwperim(dd) ;

ff=bwlabel (ee);

for i=1:max(max(ff))

hole_perim=(sum(sum(ff==1i))); %perimeter of each hole
perim_array(i)=hole_perim;
total_perim=total_perim+hole_perim;

end

total_perim

10



x=min(perim_array(1:max(max(dd)))) : (max(perim_array(l:max(max(dd))))-
min(perim_array(1:max(max(dd)))))/20:max(perim_array(1:max(max(dd))));

%20 is number of bins

hist(perim_array(1:max(max(dd))),x);

title(’Histogram of Circular Hole Perimeters’); ’perimeter histogram

xlabel(’Length of Hole Perimeters (# of Pixels)’);

ylabel (’Frequency’) ;

% HOLE CIRCULARITY

for v=1:max(max(ff))
circularity= ((perim_array(v))*perim_array(v))/area_array(v);
circularity_array(v)=circularity;

end

x=4*pi: (max(circularity_array(1:max(max(dd))))-4*pi)/

20:max(circularity_array(1l:max(max(dd))));

%7 is number of bins

hist(circularity_array(1l:max(max(dd))),x);

title(’Histogram of Circular Hole Circularity’); %circularity histogram

xlabel(’Circularity of Holes’);

ylabel(’Frequency’) ;

%DIAMETER

diam=0;
for i=1:max(max(dd))
[r,c]l=size(dd);
holerow=0;
holecol=0;
initrow=0;
initcol=0;
for j=1:r
for k=1:c
if dd(j,k)==1i
diam=diam+1;
holerow=1;
end
end
if (holerow==1)&(initrow==0)
initrow=j;
end
holediam_array(j)=diam;
diam=0;
end
for k=1:c
for j=1:r

11



if dd(j,k)==1i
holecol=1;
end
end
if (holecol==1)&(initcol==0)
initcol=k;
end
end
hole_diam=max(holediam_array) ;
diam_array(i)=hole_diam;
center_matrix(i,1)=(round(initrow+(hole_diam/2)));
center_matrix(i,2)=(round(initcol+(hole_diam/2)));
end

x=min(diam_array(1:max(max(dd)))) : (max(diam_array(1:max(max(dd))))-
min(diam_array(1:max(max(dd)))))/20:max(diam_array(l:max(max(dd))));

%20 is number of bins

hist(diam_array(1l:max(max(dd))),x);

title(’Histogram of Circular Hole Diameters’); %diameter histogram

xlabel(’Length of Hole Diameters (# of Pixels)’);

ylabel(’Frequency’) ;

%VORONOI CELLS

x=center_matrix(:,1);

y=center_matrix(:,2);

voronoi(x,y);

title(’Circular Voronoi Cells’);

D=delaunay(x,y);

for k=1:max(max(dd))
s(k)=sum(sum(D==k)) ;

end

mean(s(1:max(max(dd))));

hist(s(1:max(max(dd))));

title(’Histogram of Edges of Circular Voronoi Cells’);

%HOLE DENSITY---8x8 Grid
[r,c]l=size(dd);
x=1;
y=1;
center_count=0;
while (x<=(r-49))

y=1;

while (y<=(c-49))

center_count=0;
for i=1:num_holes

12



if ((center_matrix(i,1)>=x)&(center_matrix(i,1)<(x+50)))
if ((center_matrix(i,2)>=y)&(center_matrix(i,2)<(y+50)))
center_count=center_count+1;
end
end
end

center_countmatrix((round(x/50)+1), (round(y/50)+1))=center_count/(50%50) ;
y=y+50;

end
x=x+50;
end

x=min(min(center_countmatrix)) : (max(max(center_countmatrix))-
min(min(center_countmatrix)))/20:max(max(center_countmatrix));

%7 is number of bins

hist(center_countmatrix(1:8,1:8),x);

title(’Histogram of Circular Density-8x8 Grid’); ’diameter histogram

xlabel(’Density of Block’);

ylabel(’Frequency’) ;

%HOLE DENSITY---36x36 Grid
tot=0;
[r,c]l=size(dd);
x=1;
y=1;
center_count=0;
while (x<=(r-49))
y=1;
while (y<=(c-49))
center_count=0;
for i=1:size(center_matrix)
if ((center_matrix(i,1)>=x)&(center_matrix(i,1)<(x+50)))
if ((center_matrix(i,2)>=y)&(center_matrix(i,2)<(y+50)))
center_count=center_count+1;
end
end
end

center_countmatrix ((round(x/10)+1), (round(y/10)+1))=center_count;
tot=tot+(center_count);

y=y+10;

end
x=x+10;

13



end

POISSON DISTRIBUTION

avg=tot/1296;

r=poissrnd(avg*ones(1,1296));

hist(r);

title(’Poisson Distribution with Lambda=1.1304 (Circular)’);
xlabel (’Number of Centers Per Block’);

ylabel (’Frequency’) ;

x=min(min(center_countmatrix)): (max(max(center_countmatrix))-
min(min(center_countmatrix)))/20:max(max(center_countmatrix)) ;

%20 is number of bins

hist(center_countmatrix,x) ;

title(’Histogram of Circular Density-36x36 Grid’); %density histogram
xlabel(’Density of Block’);

ylabel (’Frequency’) ;

PLOT
h=hist(center_countmatrix,x);
hh=sum(h’) ;

plot(hh);

title(’Plot of Circular Density’);

14



